	T			9	
1 1	1 1	27 14			
1 1	1 1	1	1	1	

Code No.: 18631 (A) N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (I.T.) VIII-Semester Main & Backlog Examinations, May-2023 Natural Language Processing (PE-V)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	For each sentence, identify whether the different meanings arise from structural ambiguity, semantic ambiguity or pragmatic ambiguity?		1	1	1
	a. Time flies like an arrow				
	b. He crushed the key to my heart				
2.	Explain why CFG is used to represent natural language in parsing	2	2	1	1
3.	Given a trained classifier, how could you set up an experiment to evaluate its performance on some new text?	2	1	2	1
4.	Please comment about squared loss and log loss in logistic regression?	2	1	2	1
5.	Explain about Skip Gram and Common Bag Of Words (CBOW) models?	2	2	3	
6.	How do you evaluate vector models?	2	200		1
7.	Why bias used in activation functions?		1	3	1
8.	What are limitations of LSTM and explain what is long term memory and short term memory w.r.t language models?	2	2	4	1
9.	Define the encoder-decoder networks components and its applications?	2	2	5	
10.	What are the various metrics used to evaluate language models?	2	1	5	1
	Part-B $(5 \times 8 = 40 \text{ Marks})$			3	1
1. a)	Apply different smoothing techniques to handle data sparseness problem in n-gram model?	3	3	1	2
b)	Use Bi-Gram and Tri-gram model on following training corpus:	*			
	1. Thank you so much for your help.	5	3	1	2
	2. I really appreciate your help.				
	3. Excuse me, do you know what time it is?				
	4. I'm really sorry for not inviting you.			i	
	5. I really like your watch.				
	Which one is used to optimize any machine learning model for text classification? Justify your answer				
2. a) I	Discuss about logistic regression w.r.t. text classification.				

b)	Assume the negative r	ne follo	wing lik eview, a	elihoods for each word being part of a positive or nd equal prior probabilities for each class.	4	3	2	2
		pos	neg					
	I	0.09	0.16					
	always	0.07	0.06					
	like	0.29	0.06					
	foreign	0.04	0.15					
	movies		0.11					
		ss will	Naive b	ayes assign to the sentence "I always like foreign				
	films."?			CTT IDE and DDMI?	3	2	3	1
3. a)				as of TF-IDF and PPMI?	5	3	3	2
b)				am embedding with suitable scenario.		2	4	1
4. a)	Explain limitation	the sign	nificance	of different gates in LSTM. Also explain its	4			
b)	Describe	e how r	ecurrent	neural networks are modelled for sentiment	4	3	4	1
(5. a)	The International Control		with nea	at diagram?	4	2	5	1
b)	Explain	how F		sed dialogue system are used for machine	4	2	5	1
16 0	translati		lidden N	Tarkov Model is used for Part-of-Speech Tagging?	5	2	1	1
16. a)	Analysi	is the o	ptimizat	on problem in Logistic Regression and how do you decent method?	3	3	2	2
7.	1			following:				
a	Analys example		importa	nt of Word Embedding techniques in NLP with	4	3	3	1
b) What 2	ζ-OR p	roblem l	now do we solve it?	4	1	4	1
	,	the be		ch algorithm in machine translation, discuss with	4	3	5	2

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

	Blooms Taxonomy Level – 1	20%
i)	Blooms Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level – 3 & 4	40%
